The tangled past of eucalypt communities

After a long road, that began with a comment, ‘Of course related eucalypts don’t coexist, most of them are distributed allopatrically, and if they do re-mix, they will hybridise anyway’..  followed by many years of field-work, lab work, running models, revisions, more revisions, even more revisions..  we came to the conclusion, that indeed, evolutionary history probably explains why closely related species don’t co-occur.

Ecology is also important. Species in plots tend to have similar trait values (especially specific leaf area). One cool thing about a model-based approach is that we can estimate how much different factors influence co-occurrence and we can detect interactions- e.g. similar species co-occur unless they hybridise. The negative effect of reproductive compatibility was nearly as strong as the positive effect of having similar traits.

See more here


Linking species distribution models (SDM) and phylogenies


When using phylogenies in spatial conservation prioritisation, we need to link the phylogeny with distribution data. Increasingly, distribution data is used to predict where species occur across the landscape using a species distribution model (SDM). SDMs are currently underused in conservation, but have great potential for a variety of applications from threatened species management to conservation planning. Our recent paper shows how to use SDMs with a phylogeny in spatial conservation planning (this method could also be used for a variety of applications linking phylogenies and SDMs).

An SDM models the response of a species to a set of predictor variables (usually environmental variables). The model can be extended across a landscape with a probability of occurrence of species in grid cells**. The external branches (tips) of the phylogeny correspond to a particular taxon (let’s assume we have a species-level tree). Therefore, each external branch can simply be the probability of that species occurring in each cell (a,b,c,e,f in figure above). Now, for the internal branches. Continue reading Linking species distribution models (SDM) and phylogenies

Prioritizing areas for conservation with phylogenetic diversity

Why is evolutionary history rarely considered in actual conservation planning? Well, there are many reasons. Conservation practitioners might not be aware that evolutionary diversity can be used in conservation. If they are aware, maybe it doesn’t compete with the vast number of other conservation concerns. Or maybe they do value it, and would like to use it, but are not sure how.

We have a new paper out in PhilTransRocSocB that addresses this last problem. We show how to use phylogenetic diversity in spatial prioritisation software. The advantage of using this software is that diversity can be considered alongside other concerns–extinction risk, connectivity, cost etc.

What do you need to do this?

1-distribution data (occurrence in grids or a species distribution model-SDM)

2-a phylogeny

How does it work?   Continue reading Prioritizing areas for conservation with phylogenetic diversity

Keeping the tree of life intact

How do we best preserve the world’s remaining biodiversity? That was the topic of a conference I attended last week at the Royal Society in London on ‘Phylogeny, extinction risk and conservation’.  The two-day conference included a range of interesting presentations on global to regional conservation efforts.

Obviously the extinction story can be a depressing one—the Yangtze River Dolphin is most likely extinct and one in five plant species are threatened with extinction. However, even given the looming threats to biodiversity, there is a huge effort underway to make informed decisions about how to prevent further losses.
Continue reading Keeping the tree of life intact